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Greedy Algorithms in Banach Spaces!

V.N. TEMLYAKOV

Department of Mathematics, University of South Carolina, Columbia, SC 29208

ABSTRACT. We study efficiency of approximation and convergence of two greedy
type algorithms in uniformly smooth Banach spaces. The Weak Chebyshev Greedy
Algorithm (WCGA) is defined for an arbitrary dictionary D and provides nonlinear
m-term approximation with regard to D. This algorithm is defined inductively with
the m-th step consisting of two basic substeps: 1) selection of an m-th element ¢,
from D and 2) constructing an m-term approximant G¢,. We include the name of
Chebyshev in the name of this algorithm because at the substep 2) the approximant
GS, is chosen as the best approximant from span(¢$,...,95,). The term Weak
Greedy Algorithm indicates that at each substep 1) we choose ¢S, as an element of
D that satisfies some condition which is ”¢,,-times weaker” than the condition for
%, to be optimal (¢, = 1). We got error estimates for Banach spaces with modulus
of smoothness p(u) < yu?, 1 < ¢ < co. We proved that for any f from the closure
of the convex hull of DU O the error of m-term approximation by WCGA is of order
(1+t8+.--+t5,)"1/P, 1/p+1/q = 1. Similar results are obtained for Weak Relaxed
Greedy Algorithm (WRGA) and its modification. In this case an approximant G,
is a convex linear combination of 0,¢7,...,¢5,. We also proved some convergence
results for WCGA and WRGA.

1. INTRODUCTION

The core problem of approximation continues to be the development of effi-
cient methods for replacing general functions by simpler functions. Some methods
were invented long ago (Fourier sums, Taylor polynomials, best approximation by
trigonometric or algebraic polynomials etc.). More recently however, driven by
several numerical applications, the directions of approximation theory have moved
toward nonlinear approximation. This includes the comparatively new subject of
nonlinear m-term approximation. It has found applications in numerical solution
of integral equations, image compression, design of neural networks, and so on.

The purpose of this paper is to continue investigations of nonlinear m-term ap-
proximation. We concentrate here on studying m-term approximation with regard
to redundant dictionaries in Banach spaces. This paper is based on a combination
of ideas and methods developed for Banach spaces in [DDGS] with the approach
used in [T] in the case of Hilbert spaces. The papers [DDGS] and [T] contain de-
tailed historical remarks and we refer the reader to those papers. In this paper
we will mention only those results which are directly connected with the results
presented here.

Let X be a Banach space with norm ||-||. We say that a set of elements (functions)
D from X is a dictionary if each g € D has norm one (||g|| = 1),

g€ D implies —geD,

IThis research was supported by the National Science Foundation Grant DMS 9970326 and
by ONR Grant N00014-91-J1343
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and spanD = X.
We will study in this paper two types of greedy algorithms with regard to D.
For an element f € X we denote by Fy a peack functional for f:

1Fell =1, Fe(f) = lI£]].

The existence of such a functional is guaranteed by Hahn-Banach theorem. Let
7 := {tr}32, be a given sequence of positive numbers ¢, <1, k =1,.... We define
first the Weak Chebyshev Greedy Algorithm (WCGA) that is a generalization for
Banach spaces of Weak Orthogonal Greedy Algorithm defined and studied in [T]
(see also [DT] for Orthogonal Greedy Algorithm).

Weak Chebyshev Greedy Algorithm (WCGA). We define f§ := f3" := f.
Then for each m > 1 we inductively define

T

1). ¢S, := ¢S € D is any satisfying

Fye  (¢5,) = tmsup Fre _ (g).
geD

2). Define
®,, := @y, := span{pj}jL,,

and define G, := G2 to be the best approximant to f from &,,.
3). Denote

fm =TI = =G

We define now the generalization for Banach spaces of the Weak Relaxed Greedy
Algorithm studied in [T] in the case of Hilbert space.

Weak Relaxed Greedy Algorithm (WRGA). We define f§ := f3’" := f and
=Gy :=0. Then for each m > 1 we inductively define
1). ¢l =™ € D is any satisfying

T

Fyr (g, — Gpoq) 2 tmsup Fyr (g — Gp,_q).
geD

2). Find 0 < A,,, <1 such that

[f = ((1 = Am)Gro1 + Amer) | = Oglr;fgl [f = ((1 =G, 1+ Aep)l
and define
G, =GrT = (1= Mn)Gr 1 + A,

m m

3). Denote
J =T = =G

The term ”weak” in both definitions means that at the step 1). we do not shoot
for the optimal element of the dictionary which realizes the corresponding sup but
are satisfied with weaker property than being optimal. The obvious reason for this
is that we don’t know in general that the optimal one exists. Another, practical
reason is that the weaker the assumption the easier to satisfy it and therefore easier
to realize in practice. The Weak Relaxed Greedy Algorithm provides incremental
approximants discussed in [DDGS]. In [DDGS] they also impose weaker assumptions
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(e-greedy) on an element of the dictionary than being optimal. For instance, for a
given sequence {€,}22, €, >0, n=1,2,..., they take 0 < «a,;, < 1 and g,,, € D
satisfying

If = (1 = om)Gmr + amgm)|l < | _ inf _{If = (1= @)Gm-1+ag)| + em

instead of trying to find optimal ones. Their approach is different from ours.

We study in this paper the questions of convergence and the rate of convergence
for the two above defined methods of approximation. It is clear that in the case
of WRGA the assumption that f belongs to the closure of convex hull of D is
natural. We denote the closure of convex hull of D by A;(D). It has been proven
in [T] that in the case of Hilbert space both algorithms WCGA and WRGA give
the approximation error for the class A; (D) of the order

m

L+ t) 12

k=1

We consider here approximation in uniformly smooth Banach spaces. For a Banach
space X we define the modulus of smoothness

1
p(u) = W Gzt uyll+llz —uyl) = 1).
xz||=||YI||=

The uniformly smooth Banach space is the one with the property

li = 0.
Jim p(u)/u

It is easy to see that for any Banach space X its modulus of smoothness p(u) is a
convex function on (0, 00) satisfying the inequalities

(1.1) max(0,u — 1) < p(u) < u.

It has been established in [DDGS]| that the approximation error of an algorithm
analogous to our WRGA with ¢, = 1, k = 1,2,..., for the class A;(D) can be
expressed in terms of modulus of smoothness of Banach space. Namely, if modulus
of smoothness p of X satisfies the inequality p(u) < yu?, ¢ > 1, then the error is
of O(m'/9=1). We prove here that both algorithms WCGA and WRGA provide
approximation for the class 4; (D) in a Banach space X with modulus of smoothness
p(u) < yul, 1 < q < oo, of order

m

(1.2) L+ ) Ve, pi= q%’l.
k=1

We prove also that both algorithms WCGA and WRGA converge for f € A; (D) if

lim np(i) =0,

n— oo ’n,tn

for any positive A.
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It is well known (see for instance [DDGS], Lemma B,1) that in the case X = L,
1 < p < oo we have

uP /p if 1<p<2,
plu) < .
(p—1u?/2 if 2<p<oo.

In Section 4 we study a modification WRGA(2) of WRGA. The basic goal of
this modification is to get rid of solving the optimization problem at the step 2).
It is known from [DDGS], [DT], [T] that in many cases this can be done. In our
modification WRGA(2) we use at the step 2) the following numbers

1
2t q
Bm = D D :
1+t1+"'+tm_1 q_]_

instead of \,,, and prove that this does not effect the error estimate (1.2).

2. CONVERGENCE AND RATE OF APPROXIMATION OF WCGA
We prove here the following two theorems.

Theorem 2.1. Let X be a uniformly smooth Banach space with the modulus of
smoothness p(u). Assume that a sequence T = {tx}3>, satisfies the conditions

1>t >ty > ... and

lim np(i) =0,

n— oo ’n,tn

for any positive A. Then for any f € A1(D) we have

| = 0.

: c,T
lim [ £

Theorem 2.2. Let X be a uniformly smooth Banach space with the modulus of
smoothness p(u) < yul, 1 < q < co. Then for a sequence 7 := {tr}>, tr < 1,
k=1,2,..., we have for any f € A;(D) that

m

| <Clam@+Y &) tr, p= Lo

| fomT ,
k=1 ¢—1

with a constant C(q,~y) which may depend on q and .

We will use the following two simple and well-known lemmas in the proof of the
above two theorems.

Lemma 2.1. Let X be a uniformly smooth Banach space and L be a finite-dimensional
subspace of X. For any f € X \ L denote by f1, the best approzimant of f from L.
Then we have

Fy-5.(¢) =0
for any ¢ € L.
Proof. Let us assume the contrary: there is a ¢ € L such that ||¢|| = 1 and

Fy_f. () =8 >0,



For any A we have from the definition of p(u) that

1) 1~ fo— Ml I — fo Al < 20F — Fl(1+ o).
=72l

Next

(2.2) 1f = Fo A ABN = Fypo(F — fo+Ad) = [If — full + A6,

Combining (2.1) and (2.2) we get

A8 A
2.3 —frL— 2| < - 1— —— 4+ 2p(—7))-
(2.3) 1f = fo =2l < IIf = fLl( 7=t p(“f_fLH))
Taking into account that p(u) = o(u) we find X' > 0 such that
NG N
1- 22 op(—C ) <1
S I T

Then (2.3) gives
If = fo—=XNoll <IIf = full

what contradicts the assumption that f;, € L is the best approximant of f.

Lemma 2.2. For any bounded linear functional F' and any dictionary D we have

sup F(g) = sup F(f).
geD fEAL(D)

Proof. The inequality

sup F(g) < sup F(f)
geD fEAL(D)

is obvious. We prove the opposite inequality. Take any f € A;(D). Then for
any € > 0 there exist gf,...,g% € D and numbers af,...,a% such that af > 0,
aj +---+ayy <1and

If = Za il <e

Thus
N

F(f) < ||Flle+ F()_ asgs) <6||F||+SupF( )
=1

what proves Lemma 2.2.
We will also need one more lemma.

Lemma 2.3. Let X be a uniformly smooth Banach space with modulus of smooth-
ness p(u). Then for any f € A1(D) we have

[Tl < ||f§f_1||i&1f(1—/\tm+2p( ), m=12,....

1fm 1||
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Proof. We have for any A

(2.4) 11 = A1 |+ 1 fm—1 4 A1 [l < 2[[ - [l (T + oo )

A
1fall

and by 1) from the definition of WCGA and Lemma 2.2 we get

(2.5) Fie  (p5,) > tmsup Fre  (g) =
g€D

tm sup  Fpe  (¢) > tmFre  (f)-
p€A1(D)

By Lemma 2.1 we obtain

Fre () = Fre,_ (Fr1) = 1l

Thus similarly to (2.3) we get from (2.4)

(2.6) 1fmll < mE [ fr1 = Apmll < ([ fm-1llmEL = At + 2p( )

A
1fall

what proves the lemma.

Proof of Theorem 2.1. Denote €(u) := p(u)/u. Then we have

lim €(u) = 0.

u—07+

It is easy to derive from the definition of p(u) that p(u) is a convex function. This
implies that €(u) is an increasing continuous function on (0, 00). The relation (1.1)
implies that p(2) > 1 or €(2) > 1/2. We define inductively a sequence 2 > §; >
0y > -+ > 0. Assume 01,...,0,,_1 have been chosen. We choose 9,,, < d,,_1 such
that the A, 1= ,,||f5,_1]| satisfies the equation (see Lemma 2.3)

Am 1
c ) — _)\mtm
| fomeall” 2

2p(

what is equivalent to
1 C
€(0m) = Zthfm—lH-

Then (2.6) implies that

1
(2.7) 1fmll < 11 fmall( = 5 0mtml| frm o [1)-

Denote

1 C
Am—1 = §5mtm||fm71||‘

Then using that 6,411 < dp, and t,41 < t,, we get from (2.7)

Am S am—l(l - am—l)-



Thus by Lemma 3.4 from [DT] we get

1
Am—1 S -
m
and . .
—Omltm < —
bt fouall <
2
m <

= mtglf5
Assume the contrary that

lim | f7_1[] = a > 0.

m—r 00

Then
2

mt, o

Om <

From the definition of 4,, and the monotonicity of e(u) we get
1 2
gl ol = €(0m) < e )

mt,, o
and

R 4
175l < el
Theorem 2.1 is proved now.
Proof of Theorem 2.2. By Lemma 2.3 we have for f € A;(D) that

(2.8) 1 fm )%)-

Choose )\, from the equation

) =0 as m — oo.
mt,,a

m

A
ST lAnE(L — Mg + 29(
HN [y

A

1
At = 29(
1 fmall

2 )*

what implies that

c,T a4 -1 ﬁ
Am = [ fn o[ 777 (4y) " Tt
Denote .
Ay i=2(4y)eT.
Using the notation p : L we get from (2.8)

1
1l < 11 fmall@ = S Amtim) = [l = 8, [ fma I/ Ag)-

Raising both sides of this inequality to the power p and taking into account the
inequality 2" < x for r > 1, 0 < x < 1, we obtain

[fll? < WP (U= 8[| a1/ Ag)-
By Lemma 3.1 from [T] using the estimate ||f||P <1 < A, we get

1 FllP < Ag(1+ ) t8)7!
n=1

what implies

ww<01+zﬁlm

Theorem 2.2 is proved now.
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3. CONVERGENCE AND RATE OF APPROXIMATION OF WRGA

We prove here the analogs of Theorems 2.1 and 2.2 for the Weak Relaxed Greedy
Algorithm.

Theorem 3.1. Let X be a uniformly smooth Banach space with the modulus of
smoothness p(u). Assume that a sequence T = {tx}32, satisfies the conditions
1>t >ty > ... and

lim np(i) =0,

n—00 nt,,

for any positive A. Then for any f € Ay1(D) we have

| = 0.

: T
Jim [ £

Theorem 3.2. Let X be a uniformly smooth Banach space with the modulus of
smoothness p(u) < yu?, 1 < q¢ < co. Then for a sequence T := {tx}3>,, tx < 1,
k=1,2, ..., we have for any f € A;(D) that

I
m

m
- q
| Scl(Q77)(1+zt£) 1/p7 bpi=——
qg—1
k=1
with a constant Cy(q,~y) which may depend on q and 7.

Proof of Theorems 3.1 and 3.2. This proof is similar to the proof of Theorems 2.1
and 2.2. Instead of Lemma 2.3 we use the following lemma here.

Lemma 3.1. Let X be a uniformly smooth Banach space with modulus of smooth-
ness p(u). Then for any f € A1(D) we have

2A
mTI< T inf (1= My, + 20(——ee— =1,2,....
||fm | — ||fm_1||0§11/{§1( + p(||f71;;7;1||))7 m ) 4y

Proof. We have

S =T = (1= An)Gh1 + Amer) = frno1 — Amley, — Grazi)

and
170l = mE 1y = Ay = Gl

Similarly to (2.4) we have for any A

(3-1) [fm-1 = AMem = Gl + [ frm1 + A0 = Gl <

Ml — Gl
[ frm—all

2[| fr—t ICE+ oo ))-

Next we get for A > 0

[frm—1 + Aen — Gl = Fyr (fre1 + Men, — Grmq)) =



|1l + AFfr (on, — Groz1) 2 (| fill + At Slelg Fyr (9= Grq)-
g
Using Lemma 2.2 we continue

= [[fm-1ll + Atm sup  Fpr (¢ —Grq) = [[froall + Atm|l fra |-
€A, (D)

Using the trivial estimate ||¢], — G7,_|| < 2 we obtain from (3.1)

2\
[ frnall

(3.2) 11 = M@ = G )l < [ frn 1 [[(1 = X + 2( )

what proves Lemma 3.1.

The remaining part of the proof uses the inequality (3.2) in the same way as
the relation (2.6) has been used in the proof of Theorems 2.1 and 2.2. The only
additional difficulty here is that we are optimizing over 0 < A < 1. However, it is
easy to check that the corresponding \,, chosen in the same way as above always
satisfies the restriction 0 < A,, < 1. In the proof of Theorem 3.1 we choose A,,

satisfying the equation
2\ 1
2p( r = ) = S Amt )
I fmeall” 277

and in the proof of Theorem 3.2 from the equation

1 _
S M = 292N £, 17,

4. RATE OF CONVERGENCE OF A MODIFIED WRGA

We consider a modification of WRGA in this section. This modification is mo-
tivated by results from [DDGS] (see also [DT]) and from [T]. It was observed in
[DDGS] that one can replace A, in the definition of Relaxed Greedy Algorithm by
1/m without loss of order of approximation for A; (D). In [T] this idea was used in
the case of Weak Relaxed Greedy Algorithm in a Hilbert space. We consider here
the following modification of WRGA which we call WRGA of type 2 and denote
WRGA(2). The WRGA defined in Section 1 will be also called WRGA of type 1.

For a given 7 = {tx}%2; and 1 < g < 2 let N be such that

T4t 4t B <2<148+ 488, pi= q%’l.

Then for m < N we define WRGA(2) as WRGA :
Gt = Gl =

All notations for WRGA(2) are those for WRGA with r replaced by rq. For m > N
the definition of WRGA(2) differs from the definition of WRGA only at the step
2). We define
G1:=G" = (1= Bm)G 1 | + B
with
2t q
Bm = ——m—15 P=—7-
1+t e qg—1

The assumption on N guarantees that 0 < 3,,, <1, m > N. We prove the following
theorem.
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Theorem 4.1. Let X be a uniformly smooth Banach space with the modulus of
smoothness p(u) < yu?, 1 < g < 2. Then for a sequence 7 := {tx}7>,, tr < 1,
k=1,2,..., we have for any f € A1(D) that

m

- q
171 < Colgm+ D )77 pi= =3,
k=1

with a constant Cy(q,~y) which may depend on q and 7.
Proof. Denote

n

To:=1, T,:=(1+ Zti)l/p.
k=1

Then obviously T,, < 2T, ;1 for all n. We want to prove that

1"
m

with a constant C' independent of m. The proof goes by induction. For convenience
let us drop rq, 7 in the notations. Theorem 3.2 gives the required estimate with
C > Ci(q,7y) for m=1,...,N. We prove this estimate for m > N. Assume

|<CTY, m=1,...,

|fmall < 1T, 0
with some constant C; < C which will be specified later. Then
(4.1) | fm—1 — Bm(om — Gm—1)|| < C1T1 + 28m =
T, (Cr + 2t§T7g—_ﬁ) < (C1+2)T,,L, <2(C1 +2)T,,"
Thus if C; satisfies the inequality
(4.2) 2(C1+2)<C
then we get the required estimate for || f,,|| in this case. Assume now that
(4.3) CiT,Y < fmaall < CT,L,
By (3.2) with p(u) < yu? we get
(4.4) [ fmll < N fm—1ll(1 = Bmtm + C2B7 | fr—1ll™7)
with Cy := 2179y, Assume that C satisfies the inequality
(4.5) 21~ < oytoy.
Then using (4.3) we see that
Bmtm = Cof || frn—1 77

This implies that

fom =1 = Bty + CoB8 || frm—al| ¢ <1
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and
(4.6) pit, < i
Raising (4.4) into the power ¢ and using (4.6) we obtain
(4.7) ([ fml|* < N fm-all?A=Bmtm+Cofl frmal ) = [[frm -2 (1=Bmtm)+CaB,.
Using (4.3) we get from here that

| llTT8, < CUT T 1)1 (1 — 242,777 ,) + 32042, 7%,
Next, for 1 < ¢ < 2 we have

(T Ton)? = (1 0,57 )97 <1+ 8,7,

and
(T Tone1) (1 = 25,17 ) < 1 — 0,157,

Therefore,
(4.8) |l UTE < COL = 2,17, (1 — C529C77)) < C
if
(4.9) C? > (921,
Now we specify the constants C' and C; as

C) = 471/‘1
and
(4.10) C = max(4 + 8y, C1(¢,7)).

It is easy to check that these C; and C satisfy (4.2), (4.5), (4.9) and with the C
from (4.10) the inequality (4.8) gives

[fm 19T, < C7
what comletes the proof of Theorem 4.1.

Remark. Theorem 4.1 covers the case 1 < g < 2. We can modify the definition
of WRGA(2) to extend Theorem 4.1 to the case 2 < ¢ < oo. Denote in this case
s := q/p and choose N such that

Tt B <28 <1480 4+ 18 p::Ll,
q_
and
=
25t q
Pm = ——=m—15 P=—7
R T Dt g—1

Then using the inequalties
(1+z)<1+((2°—1)z, 0<z<1, s>1,
(1+2)°(1—-2°z2)<1—2, 0<ax<2°

in the estimating the right hand side of (4.7) we get the required estimate with
some C'.
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